Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class 12 chapter Continuity exercise 8.2 question 4 subquestion (iii)

Answers (1)

Answer:

 No value of k can make +

Hint:

 Put L.H.L = R.H.L at x = 0

Given:

 f(x)= \begin{cases}k\left(x^{2}+3 x\right) & x<0 \\ \cos 2 x & x \geq 0\end{cases}

Explanation:

At x = 0

L.H.L = R.H.L = f(0)             ....(1)

\begin{aligned} &\text { L.H.L } =\lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0}(0-h)=\lim _{h \rightarrow 0} k\left[(-h)^{2}+3(-h)\right] \\ &=\lim _{h \rightarrow 0} k\left[h^{2}-3 h\right]=0 \\ &f(0)=\cos 2 \times 0=\cos 0=1 \\ &\text { L.H.L } \neq \mathrm{f}(0) \end{aligned}

Hence no value of k can make f continuous.

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads