Get Answers to all your Questions

header-bg qa

A hemispherical bowl of internal radius 9 cm is full of liquid. The liquid is to be filled into cylindrical shaped bottles each of radius 1.5 cm and height 4 cm. How many bottles are needed to empty the bowl?

Answers (1)

The radius of hemispherical bowl = 9 cm

 Volume =\frac{2}{3}\pi r^3 =\frac{2}{3} \times \frac{22}{7}\times 9\times 9\times 9

  Radius of cylindrical bottle = 1.5 cm

  Height = 4cm

 Volume=\pi r^2h

 =\frac{22}{7}\times \frac{15}{10}\times \frac{15}{10}\times 4

   \text{ Number of bottles needed}=\frac{\text {volume of hemispherical bowl}}{\text {volume of cylindrical bottle}}

                        =\frac{2}{3} \times \frac{22}{7}\times 9\times 9\times 9

                       _________________

                        =\frac{22}{7}\times \frac{15}{10}\times \frac{15}{10}\times 4

                        =\frac{2 \times 9 \times 9 \times \times 10 \times 10}{3 \times 15 \times 15 \times 4} =54 bottles  

Posted by

infoexpert21

View full answer