Get Answers to all your Questions

header-bg qa

Water flows through a cylindrical pipe, whose inner radius is 1 cm, at the rate of 80 cm/sec in an empty cylindrical tank, the radius of whose base is 40 cm. What is the rise of water level in tank in half an hour?

Answers (1)

Radius of cylindrical pipe = 1 cm

            Height = 80 cm

   Volume=\pi r ^2 h

                        =\frac{22}{7} \times 1 \times 1 \times 80 = 251.4285 cm^3 /sec

In half an hour volume of water is

            =251.4285 \times30 \times60 = 452571.5 cm^3

            Radius of cylindrical tank = 40 cm

            Let height = h

            Volume =\pi r ^2 h

                        \frac{22}{7}\times (40)^2 h= 5828.5714 cm^3

            According to question

            The volume of cylindrical pipe = volume of the cylindrical tank

                     = 452571.5 = 5028.5714h

                        \frac{452571.5}{5028.5714} = h

                        h =89.99

                        h = 90 cm (approximate)

Posted by

infoexpert21

View full answer