Get Answers to all your Questions

header-bg qa

Need solution for RD Sharm Maths Class 12 Chapter 15 Tangents and Normals Excercise Fill in the blanks Question 20

Answers (1)

Answer:

                y=0  is the required equation of normal

Hint:

Equation of normal,

                \left(y-y_{1}\right)=-\frac{d x}{d y}\left(x-x_{1}\right)

Given:

Given curve,

                y^{2}=8x

To find:

We have to find the equation of normal to the given curve at the origin.

Solution:

We have,

                y^{2}=8x

On differentiating both side with respect to x , we get

\Rightarrow 2 y \frac{d y}{d x}=8                                                                                                                         \left[\because \frac{d\left(x^{n}\right)}{d x}=n x^{n-1}\right]

\begin{aligned} &\Rightarrow \frac{d y}{d x}=\frac{8}{2 y} \\ &\Rightarrow \frac{d y}{d x}=\frac{4}{y} \\ &\Rightarrow-\left(\frac{d x}{d y}\right)=\frac{-y}{4} \end{aligned}

At origin i.e. \left ( 0,0 \right )

Here the equation of normal,

\begin{aligned} &\left(y-y_{1}\right)=-\left(\frac{d x}{d y}\right)_{(0.0)}\left(x-x_{1}\right) \\ \Rightarrow \quad &(y-0)=0(x-0) \\ \Rightarrow \quad & y=0 \end{aligned}

Hence the required equation of normal is y=0.

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads