Get Answers to all your Questions

header-bg qa

Provide Solution For  R.D.Sharma Maths Class 12 Chapter 15 Tangents and Normals Exercise 15.2 Question 3 Sub Question 18 Maths Textbook Solution.

Answers (1)

ANSWER: Equation of tangent, y y_{1}=2 a\left(x+x_{1}\right)

                 Equation  of normal , y-y_{1}=\frac{-y_{1}}{2 a}\left(x-x_{1}\right)


 Differentiating  with respect to x  and find its slope.


y^{2}=4 a x \text { at }\left(x_{1}, y_{1}\right)


\begin{aligned} &2 y \frac{d y}{d x}=4 a \\ &\Rightarrow \frac{d y}{d x}=\frac{2 a}{y} \end{aligned}

\text { Slope of tangent }=\frac{d y}{d x_{\left.\mid x_{1}, y_{1}\right\}}}=\frac{2 a}{y_{1}}=m

Equation of tangent is

\begin{aligned} &y-y_{1}=m\left(x-x_{1}\right) \\ &\Rightarrow y-y_{1}=\frac{2 a\left(x-x_{1}\right)}{y_{1}} \end{aligned}

\begin{aligned} &\Rightarrow y y_{1}-y_{1}^{2}=2 a x-2 a x_{1} \\ &\Rightarrow y y_{1}-4 a x_{1}=2 a x-2 a x_{1} \\ &\Rightarrow y y_{1}=2 a x+2 a x_{1} \\ &\therefore y y_1=2 a\left(x+x_{1}\right) \end{aligned}

Equation of Normal  is ,

y-y_{1}=-\frac{1}{\text { slope of tangent }}\left(x-x_{1}\right)


\Rightarrow y-y_{1}=\frac{-y_{1}}{2 a}\left(x-x_{1}\right)

Posted by


View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support