Get Answers to all your Questions

header-bg qa

please solve rd sharma class 12 chapter 15 Tangents and Normals exercise 15.3 , question 1 sub question 3 maths textbook solution

Answers (2)

\theta=\frac{\pi}{2} and \tan^{-1} \left (\frac{1}{2} \right )

Hint – The angle of intersection of curves is \tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|

m1=slope of first curve.   m2=slope of second curve.

Given- 2 y^{2}=x^{3} \ldots \ldots(1)\;\; \& \;\; y^{2}=32 x \ldots \ldots(2)

First curve is 2y=x^{3}

Differentiating above with respect to x,
As we know,  \frac{d}{d x}\left(x^{n}\right)={ }^{n} x^{n-1}, \frac{d}{d x}(\text { constants })=0

\begin{aligned} &=4 y \frac{d y}{d x}=3 x^{2} \\ &=m_{1}=\frac{d y}{d x}=\frac{3 x^{2}}{4 y} \ldots \ldots \text { (3) } \end{aligned}

Second curve is y^{2}=32x

Differentiating above with respect to x,

\begin{aligned} &=2 y \frac{d y}{d x}=32 \\ &=\frac{d y}{d x}=\frac{32}{2 y}=\frac{16}{y} \\ &=m_{2}=\frac{d y}{d x}=\frac{16}{y} \ldots \ldots \text { (4) } \end{aligned}

Substituting (1) in (2),we get

\begin{aligned} &=2 y^{2}=x^{3} \\ &=2(32 x)=x^{3} \\ &=64 x=x^{3} \\ &=x^{3}-64 x=0 \end{aligned}

\begin{aligned} &=x\left(x^{2}-64\right)=0 \\ &=x=0 \text { or } x^{2}-64=0 \\ &=x=0 \text { or } x^{2}=64 \\ &=x=0 \& x=\pm 8 \end{aligned}

Substituting  x=0 or \pm 8 in (2)

y^{2}=32x  This is not possible

When x=0

\begin{aligned} &y^{2}=32(0) \\ &y=0 \end{aligned}

When x=8

\begin{aligned} &y^{2}=32(8) \\ &y^{2}=256 \\&y=\pm 16 \end{aligned}

Substituting the values  for m1& m2 , we get,
When, x=0

\begin{aligned} &=m_{1}=\frac{d y}{d x}=\frac{3 x^{2}}{4 y} \\ &=m_{1}=\frac{3(0)}{4(16)}=0 \end{aligned}

When x=8,y=16

=m_{1}=\frac{3(8)^{2}}{4(16)}=3

Value of m1 is 0 and 3

When x=0 & y=0

\begin{aligned} &=m_{2}=\frac{d y}{d x}=\frac{16}{y} \\ &=m_{2}=\frac{16}{0}=\infty \quad\left\{:: \frac{1}{0}=\infty\right\} \end{aligned}

When y=16

Values of m2 is \infty and 1

As we know, Angle of intersection of two curves is given by \operatorname{tan} \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|

When m1 is 0 and m2 is \infty

\theta=\tan ^{-1}(\infty) As we know \tan \left(\frac{\pi}{2}\right)=\infty
\begin{aligned} &\operatorname{Tan} \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\ &\operatorname{Tan} \theta=\left(\frac{\infty-0}{1+\infty \times 0}\right) \\ &\operatorname{Tan} \theta=\infty \\ &\theta=\tan ^{-1}(\infty) \\ &=\tan ^{-1}(\infty)=\frac{\pi}{2} \\ &\theta=\frac{\pi}{2} \end{aligned}

 

\infty=\frac{\pi}{2}                                                    

 

When m_{1}=3   and  m_{2}=1

\begin{aligned} &\operatorname{Tan} \theta=\left|\frac{(3-1)}{1+(1)(3)}\right|=\left|\frac{2}{1+3}\right|=\left|\frac{2}{4}\right| \\ &\operatorname{Tan} \theta=\left|\frac{1}{2}\right| \\ &\operatorname{Tan} \theta=\frac{1}{2} \\ &=\theta=\tan ^{-1}\left(\frac{1}{2}\right) \end{aligned}

Posted by

Info Expert 29

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

\theta =\tan ^{-1}\left(\frac{1}{2}\right)  and  \tan ^{-1}\left(\frac{1}{2}\right)

Hint – The angle of intersection of curves is \tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|

m1=slope of first curve.   m2=slope of second curve.

Given- 2 y^{2}=x^{3} \ldots \ldots(1)\;\; \&\;\; y^{2}=32 x \ldots \ldots(2)

First curve is 2y^{2}=x^{3}

Differentiating above with respect to x,
As we know,  \frac{d}{d x}\left(x^{n}\right)={ }^{n} x^{n-1}, \frac{d}{d x}(\text { constants })=0

\begin{aligned} &=4 y \frac{d y}{d x}=3 x^{2} \\ &=m_{1}=\frac{d y}{d x}=\frac{3 x^{2}}{4 y} \ldots \ldots \text { (3) } \end{aligned}

Second curve is y^{2}=32x

Differentiating above with respect to x,

\begin{aligned} &=2 y \frac{d y}{d x}=32 \\ &=\frac{d y}{d x}=\frac{32}{2 y}=\frac{16}{y} \\ &=m_{2}=\frac{d y}{d x}=\frac{16}{y} \ldots \ldots \text { (4) } \end{aligned}

Substituting (1) in (2),we get

\begin{aligned} &=2 y^{2}=x^{3} \\ &=2(32 x)=x^{3} \\ &=64 x=x^{3} \\ &=x^{3}-64 x=0 \end{aligned}

\begin{aligned} &=x\left(x^{2}-64\right)=0 \\ &=x=0 \text { or } x^{2}-64=0 \\ &=x=0 \text { or } x^{2}=64 \\ &=x=0 \& x=\pm 8 \end{aligned}

Substituting  \begin{aligned} x=0 \;\; \& \;\; x=\pm 8 \end{aligned}   in (1)

\begin{aligned} y^{2}=32x \end{aligned}

When, x=0

\begin{aligned} &y^{2}=32(0) \\ &y=0 \end{aligned}

When x=8

\begin{aligned} &y^{2}=32(8) \\ &y^{2}=256 \\ &y=\pm 16 \end{aligned}

Substituting the values  for m1& m2 , we get,

when,x=0
\begin{aligned} &=m_{1}=\frac{d y}{d x}=\frac{3 x^{2}}{4 y} \\ &=m_{1}=\frac{3(0)}{4(16)}=0 \end{aligned}

When, x=8, y=16

=m_{1}=\frac{3(8)^{2}}{4(16)}=3

Value of m1 is 0 and 3.

When x=-0,y=0

\begin{aligned} &=m_{2}=\frac{d y}{d x}=\frac{16}{y} \\ &=m_{2}=\frac{16}{0}=\infty \quad\left\{:: \frac{1}{0}=\infty\right\} \end{aligned}

when y=16

=m_{2}=\frac{16}{y}=\frac{16}{16}=1

Value of m2 is  \infty  and 1

Angle of intersection of two curves is given by \operatorname{tan} \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|

When m1 is 0 and m2 is \infty

\begin{aligned} &\operatorname{Tan} \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\ &\operatorname{Tan} \theta=\left(\frac{\infty-0}{1+\infty \times 0}\right) \\ &\operatorname{Tan} \theta=\infty \\ &\theta=\tan ^{-1}(\infty) \\ &=\tan ^{-1}(\infty)=\frac{\pi}{2} \\ &\theta=\frac{\pi}{2} \end{aligned}                                    

 

When m_{1}=3   and  m_{2}=1

 

\begin{aligned} &\operatorname{Tan} \theta=\left|\frac{(3-1)}{1+(1)(3)}\right|=\left|\frac{2}{1+3}\right|=\left|\frac{2}{4}\right| \\ &\operatorname{Tan} \theta=\left|\frac{1}{2}\right| \\ &\operatorname{Tan} \theta=\frac{1}{2} \\ &=\theta=\tan ^{-1}\left(\frac{1}{2}\right) \end{aligned}

Posted by

Info Expert 29

View full answer