Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma Maths Class 12 Chapter 15 Tangents and Normals Excercise Fill in the blanks Question 13

Answers (1)

Answer:

                f^{\prime}(3)=1

Hint:

First find the slope of given curve at point \left ( 3,4 \right ) , then compare with\frac{3\pi}{4}

Given:

Given curve,

                y=f(x)

To find:

We have to find {f}'\left ( 3 \right ) , if the normal to the given curve at \left ( 3,4 \right ) makes an angle \frac{3\pi}{4} with positive x-axis.

Solution:

Here we have,

                y=f(x)

On differentiating with respect to x , we get

\Rightarrow \quad \frac{d y}{d x}=f^{\prime}(x)

 Slope of tangent at  (3,4)=\frac{d y}{d x}=f^{\prime}(x)_{(3,4)}

Therefore, slope of normal

\begin{aligned} &=\frac{-1}{f^{\prime}(x)_{(3.4)}} \\ &=\frac{-1}{f^{\prime}(3)} \end{aligned}

But  \frac{-1}{f^{\prime}(3)}=\tan \left(\frac{3 \pi}{4}\right)      [Given]

\begin{aligned} &\Rightarrow \quad \frac{-1}{f^{\prime}(3)}=\tan \left(\frac{\pi}{2}+\frac{\pi}{4}\right) \\\\ &\Rightarrow \quad \frac{-1}{f^{\prime}(3)}=-1 \end{aligned}

 

Hence   f^{\prime}(3)=1

 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads