Get Answers to all your Questions

header-bg qa

Provide solution for rd sharma maths class 12 chapter 15 Tangents and Normals exercise 15.3 question 2 sub question 3

Answers (1)

m_{1} \times m_{2}=-1

Hence, two curves intersect orthogonally.

Hint - Two curves intersects orthogonally if m_{1} \times m_{2}=-1, where m1 and m2 are the slopes of two curves.

Given –   x^{2}+4y^{2}=8---(1)

x^{2}-2y^{2}=4---(2)

Solving (1) & (2),we get

From (2) curve,

x^{2}=4+2y^{2}---(1)

Substituting in (1) 

\begin{aligned} &=x^{2}+4 y^{2}=8 \\ &=4+2 y^{2}+4 y^{2}=8 \\ &=6 y^{2}=4 \end{aligned}

\begin{aligned} &=y^{2}=\frac{4}{6} \\ &=y=\pm \sqrt{\frac{2}{3}} \end{aligned}

Substituting  y=\pm \sqrt{\frac{2}{3}} in x^{2}=4+2 y^{2} , we get

\begin{aligned} &=x^{2}=4+2\left(\pm \sqrt{\frac{2}{3}}\right)^{2} \\ &=x^{2}=4+2\left(\frac{2}{3}\right) \\ &=x^{2}=4+\frac{4}{3}=\frac{12+4}{3}=\frac{16}{3} \\ &=x=\pm \frac{4}{\sqrt{3}} \end{aligned}

 

The point of intersection of two curves is \left(\frac{4}{\sqrt{3}}, \frac{2}{(\sqrt{3})}\right)\;\; \&\;\;\left(-\frac{4}{\sqrt{3}},-\frac{2}{(\sqrt{3})}\right)

 

First curve is  x^{2}+4 y^{2}=8

Differentiating above with respect to x,
As we know, \frac{d}{d x}\left(x^{n}\right)=^{n} x^{n-1}, \frac{d}{d x}(\text { constants })=0
\begin{aligned} &=2 x^{2}+8 y\left(\frac{d y}{d x}\right)=0 \\ &=8 y \frac{d y}{d x}=-2 x \\ &=\frac{d y}{d x}=\frac{-2 x}{8 y}=\frac{-x}{4 y} \\ &=m_{1}=\frac{d y}{d x}=\frac{-x}{4 y}---(3) \end{aligned}

Second curve is  x^{2}-2 y^{2}=4

Differentiating above with respect to x,
\begin{aligned} &=2 x-4 y \frac{d y}{d x}=0 \\ &=4 y \frac{d y}{d x}=2 x \end{aligned}

\begin{aligned} &=\frac{d y}{d x}=\frac{2 x}{4 y}=\frac{x}{2 y} \\ &=m_{2}=\frac{d y}{d x}=\frac{x}{2 y}---(4) \end{aligned}

At \left(\frac{4}{\sqrt{3}}, \frac{2}{(\sqrt{3})}\right) in eq (3), we get

\begin{aligned} &=\frac{d y}{d x}=\frac{\frac{-4}{\sqrt{3}}}{4 \times\left(\sqrt{\frac{2}{3}}\right)} \\ &=\frac{d y}{d x}=\frac{\frac{-1}{\sqrt{3}}}{\left(\sqrt{\frac{2}{3}}\right)} \end{aligned}

\begin{aligned} &=m_{1}=\frac{-1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{2}}=\left(\frac{-1}{\sqrt{2}}\right) \\ &=m_{1}=\frac{-1}{\sqrt{2}} \end{aligned}

At \left(\frac{4}{\sqrt{3}}, \frac{2}{(\sqrt{3})}\right) in eq (4), we get

\begin{aligned} &=\frac{d y}{d x}=\frac{\frac{4}{\sqrt{3}}}{2 \times\left(\sqrt{\frac{2}{3}}\right)} \\ &=m_{2}=\frac{4}{\sqrt{3}} \times \frac{\sqrt{3}}{2 \sqrt{2}}=\left(\frac{2}{\sqrt{2}}\right)=\sqrt{2} \\ &=m_{2}=\sqrt{2} \end{aligned}

 

When m_{1}=\frac{-1}{\sqrt{2}} and m_{2}=\sqrt{2}

 

Two curves intersects orthogonally if m_{1} \times m_{2}=-1

=\frac{-1}{\sqrt{2}} \times \sqrt{2}=-1

Two curves  x^{2}+4 y^{2}=8 \;\;\; \&\;\;\; x^{2}-2 y^{2}=4 intersect orthogonally.

Posted by

Info Expert 29

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads