Get Answers to all your Questions

header-bg qa

Provide solution for rd sharma maths class 12 chapter 15 Tangents and Normals exercise 15.3 question 3 sub question 3

Answers (1)

m_{1} \times m_{2}=-1

Hence, two
 curves intersect orthogonally.

Hint - Two curves intersects orthogonally if m_{1} \times m_{2}=-1, where m1 and m2 are the slopes of two curves.

Given –  y^{2}=8x-------(1)

2x^{2}+y^{2}=10-------(2)

The point of intersection of two curve (1,2\sqrt{2}).

First curve is y^{2}=8x

Differentiating above with respect to x,

As we know,\frac{d}{d x}\left(x^{n}\right)={ }^{n} x^{n-1}, \frac{d}{d x}(\text { constants })=0
\begin{aligned} &=2 y \frac{d y}{d x}=8 \\ &=\frac{d y}{d x}=\frac{8}{2 y} \\ &=m_{1}=\frac{4}{y}---(3) \end{aligned}
Second curve is 2x^{2}+y^{2}=10

Differentiating above with respect to x,
\begin{aligned} &=4 x+\frac{2 y d y}{d x}=0 \\ &=2 y \frac{d y}{d x}=-4 x \\ &=\frac{d y}{d x}=\frac{-4 x}{2 y}=\frac{-2 x}{y} \\ &=m_{2}=\frac{-2 x}{y}---(4) \end{aligned}

Substituting (1,2\sqrt{2}) for m1& m2 , we get,
\begin{aligned} &=m_{1}=\frac{4}{y}=\frac{4}{2 \sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2} \\ &=m_{1}=\sqrt{2} \\ &=m_{2}=\frac{-2 x}{y}=\frac{-2 \times 1}{2 \sqrt{2}}=\frac{-1}{\sqrt{2}} \\ &=m_{2}=\frac{-1}{\sqrt{2}} \end{aligned}

When m_{1}=\sqrt{2} and  m_{2}=\begin{aligned}\frac{-1}{\sqrt{2}} \end{aligned}

Two curves intersects orthogonally if m_{1} \times m_{2}=-1

\begin{aligned}=\sqrt{2} \times \frac{-1}{\sqrt{2}}=-1 \end{aligned}

Hence, two curves y^{2}=8x \;\;\;\& \;\;\; 2x^{2}+y^{2}=10 intersect orthogonally.

Posted by

Info Expert 29

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads