Get Answers to all your Questions

header-bg qa

 Show that the point (x, y) given by x=\frac{2at}{1+t^{2}}  and x=\frac{a\left ( 1-t^{2} \right )}{1+t^{2}}  lies on a circle for all real values of t such that –1 ≤ t ≤1 where a is any given real numbers.

Answers (1)

We have variable point as x=\frac{2at}{1+t^{2}} and y=\frac{a\left ( 1-t^{2} \right )}{1+t^{2}}

\\x^{2}+y^{2}=\frac{4a^{2}t^{2}}{\left ( 1+t^{2} \right )^{2}}+\frac{a^{2}\left ( 1+t^{4}-2t^{2} \right )}{\left ( 1+t^{2} \right )^{2}} \\\\=\frac{a^{2}+a^{2}t^{4}+2a^{2}t^{2}}{\left ( 1+t^{2} \right )^2}\\\\=\frac{a^{2}\left ( 1+t^{2} \right )^{2}}{\left ( 1+t^{2} \right )^2}\\\\= a^{2}

Posted by

infoexpert22

View full answer