Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter 10 Differentiation exercise Multiple choice question 29 maths

Answers (1)

Answer:

        \frac{y}{x}

Hint:

        Differentiate the function w.r.t x

Given:

        \sin ^{-1}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)=\log a

Solution:  

        \sin ^{-1}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)=\log a

        \frac{x^{2}-y^{2}}{x^{2}+y^{2}}=\sin \log a

        \frac{\left(x^{2}+y^{2}\right)\left(2 x-2 y \frac{d y}{d x}\right)-\left(x^{2}-y^{2}\right)\left(2 x+2 y \frac{d y}{d x}\right)}{\left(x^{2}+y^{2}\right)^{2}}=0

        \frac{2 x^{3}-2 x^{2} y d y+2 x y^{2}-2 y^{3} \frac{d y}{d x}-2 x^{3}-2 x^{2} y \frac{d y}{d x}+2 x y^{2}+2 y^{3} \frac{d y}{d x}}{\left(x^{2}+y^{2}\right)^{2}}=0

        \begin{aligned} &-4 x^{2} y \frac{d y}{d x}+4 x y^{2}=0 \\\\ &-4 x^{2} y \frac{d y}{d x}=-4 x y^{2} \\\\ &\frac{d y}{d x}=\frac{4 x y^{2}}{4 x^{2} y}=\frac{y}{x} \end{aligned}

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads