Get Answers to all your Questions

header-bg qa

need solution for RD Sharma maths class 12 chapter Differentiation exercise 10.4 question 31

 

Answers (1)

best_answer

Answer:

\frac{d y}{d x}=\frac{y}{x}-\sqrt{\frac{y^{2}}{x^{2}}-1}     At x=\frac{\pi}{4}

Hint:

Use chain rule

Given:

\sqrt{y+x}+\sqrt{y-x}=c

Solution:

\sqrt{y+x}+\sqrt{y-x}=c

Differentiate the given equation w.r.t x

\frac{d}{d x}(\sqrt{y+x}+\sqrt{y-x})=\frac{d(c)}{d x}

\frac{d(\sqrt{y+x})}{d x}+\frac{d(\sqrt{y-x})}{d x}=0                        \left[\because \frac{d(\operatorname{cons} \tan t)}{d x}=0\right]

 

\frac{d(\sqrt{y+x})}{d(y+x)} \times \frac{d(y+x)}{d x}+\frac{d(\sqrt{y-x})}{d(y-x)} \times \frac{d(y-x)}{d x}=0            [Using chain rule]

 

\frac{1}{2 \sqrt{y+x}} \times\left(\frac{d y}{d x}+\frac{d x}{d x}\right)+\frac{1}{2 \sqrt{y-x}} \times\left(\frac{d y}{d x}-\frac{d x}{d x}\right)=0            \left[\because \frac{d\left(x^{n}\right)}{d x}=n x^{n-1}\right]

 

\frac{1}{2 \sqrt{y+x}}\left(\frac{d y}{d x}+1\right)+\frac{1}{2 \sqrt{y-x}}\left(\frac{d y}{d x}-1\right)=0

\frac{d y}{d x}\left(\frac{1}{2 \sqrt{y+x}}+\frac{1}{2 \sqrt{y-x}}\right)=\frac{1}{2 \sqrt{y-x}}-\frac{1}{2 \sqrt{y+x}}

\frac{d y}{d x}\left(\frac{\sqrt{y-x}+\sqrt{y+x}}{2 \sqrt{y+x} \cdot \sqrt{y-x}}\right)=\frac{\sqrt{y+x}-\sqrt{y-x}}{(2 \sqrt{y-x} \cdot \sqrt{y+x})}

\frac{d y}{d x} \times[\sqrt{y-x}+\sqrt{y+x}]=[\sqrt{y+x}-\sqrt{y-x}]

\frac{d y}{d x}=\frac{\sqrt{y+x}-\sqrt{y-x}}{\sqrt{y+x}+\sqrt{y-x}}

 

Rationalizing the denominator

 

\frac{d y}{d x}=\frac{(\sqrt{y+x}-\sqrt{y-x})(\sqrt{y+x}-\sqrt{y-x})}{(\sqrt{y+x}+\sqrt{y-x})(\sqrt{y+x}-\sqrt{y-x})}

      =\frac{(\sqrt{y+x}-\sqrt{y-x})^{2}}{(\sqrt{y+x})^{2}-(\sqrt{y-x})^{2}}                \left[\because a^{2}-b^{2}=(a+b)(a-b)\right]

\frac{d y}{d x}=\frac{(\sqrt{y+x})^{2}+(\sqrt{y-x})^{2}-2 \sqrt{y+x} \cdot \sqrt{y-x}}{(y+x)-(y-x)}

       =\frac{y+x+y-x-2 \sqrt{y+x} \cdot \sqrt{y-x}}{y+x-y+x}

       =\frac{2 y-2 \sqrt{y+x} \cdot \sqrt{y-x}}{2 x}

       =\frac{2(y-\sqrt{y+x} \cdot \sqrt{y-x})}{2 x}

       =\frac{y-\sqrt{y+x} \cdot \sqrt{y-x}}{x}

      =\frac{y-\sqrt{y^{2}-x^{2}}}{x}

      =\frac{y}{x}-\frac{\sqrt{y^{2}-x^{2}}}{\sqrt{x^{2}}}

\therefore \frac{d y}{d x}=\frac{y}{x}-\sqrt{\frac{y^{2}}{x^{2}}-1}

Thus proved

 

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads