Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class 12 chapter Differentiation exercise 10.5 question 38

Answers (1)


Answer:  \frac{d y}{d x}=\frac{x(1+\log (x+y)-y x \log y}{y \log x+x-y(1+\log x+y)}

Hint:  To solve this we add log on both sides

Given:   x^{y}+y^{x}=(x+y)^{x+y}


Taking log on both sides,

        \begin{aligned} &\log x^{y}+\log y^{x}=\log (x+y)^{x+y} \\\\ &y \log x+x \log y=(x+y)+\log (x+y) \end{aligned}                \left[\because \frac{d}{d x}(u-v)=u . d v+v \cdot d u\right]

        y \cdot \log x+x \log y^{\prime}+\frac{x}{y} y^{\prime}+\log y=\frac{(x+y)}{(x+y)}\left(1+y^{\prime}\right)+\log (x+y)\left(1+y^{\prime}\right)

        \begin{aligned} &=\left(1+y^{\prime}\right)(1+\log (x+y)) \\\\ &\frac{y}{x}+\log y+y^{\prime}\left(\log x+\frac{x}{y}\right)=1+\log (x+y)+y^{\prime}(1+\log (x+y)) \end{aligned}

        y^{\prime}\left(\log x+\frac{x}{y}-(1+\log (x+y))=1+\log (x+y)-\left(\frac{y}{x}+\log y\right)\right.

        y^{\prime}=\frac{x\left(1+\log (x+y)^{\prime-y}+x \log y\right)}{y \log x+x-y(1+\log (x+y))}

Posted by


View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support