Get Answers to all your Questions

header-bg qa

Provide solution RD Sharma maths class 12 chapter 10 differentiability exercise 10.1 question 1 maths textbook solution

Answers (1)

Answer:

\left ( 3e^{3x} \right )

Hint:

Use first principle to find the differentiation of \left ( e^{3x} \right )

Given:

\left ( e^{3x} \right )

Solution:

Let

f\left ( x \right )= e^{3x}

f\left ( x+h \right )= e^{3\left ( x+h \right )}

So, now we will use formula of differentiation by first principle

\frac{d}{dx}f\left ( x \right )=\lim_{h\rightarrow 0}\frac{f\left ( x+h \right )-f\left ( x \right )}{h}

\frac{d}{dx}\left ( e^{3x} \right )=\lim_{h\rightarrow 0}\frac{e^{3\left ( x+h \right )}-e^{3x}}{h}

=\lim_{h\rightarrow 0}\frac{e^{3x}\times e^{3h}-e^{3x}}{h}

=\lim_{h\rightarrow 0}\frac{e^{3x}\left ( e^{3h}-1 \right )}{h}

Multiply and divide by 3

=\lim_{h\rightarrow 0}e^{3x}\frac{\left ( e^{3h}-1 \right )}{3h}\times 3                            

=\lim_{h\rightarrow 0}e^{3x}\times 1\times 3                                          \left [ \because \lim_{h\rightarrow 0} \left ( \frac{e^{x}-1}{x} \right )=1\right ]

 =3e^{3x}                                           

Hence, the differentiation of e^{3x} is 3e^{3x}

Posted by

Infoexpert

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads