Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter 10 Differentiation exercise Very short answers question 4 maths

Answers (1)

Answer:

The answer of the given question will be \frac{1}{2}.

Given:

If f(1)=4 \text { and } f^{\prime}(1)=2 , find the value of derivative \log \left[f\left(e^{x}\right)\right] with respect to x at the point x=0

Hint:

\frac{d}{d x}(\log x)=\frac{1}{x} \& \frac{d}{d x}\left(e^{x}\right)=e^{x} \& \frac{d}{d x}[f(x)]=f^{\prime}(x)

Solution:  

\begin{aligned} &\frac{d u}{d x}=\frac{d}{d x} \log \left[f\left(e^{x}\right)\right] \\\\ &=\frac{1}{f\left(e^{x}\right)} \cdot \frac{d}{d x}\left[f\left(e^{x}\right)\right] \end{aligned}

\begin{aligned} &=\frac{1}{f\left(e^{x}\right)} \cdot f^{\prime}\left(e^{x}\right) \cdot \frac{d}{d x}\left(e^{x}\right) \\\\ &\Rightarrow \frac{d u}{d x}=\frac{f^{\prime}\left(e^{x}\right) \cdot e^{x}}{f\left(e^{x}\right)} \end{aligned}

\begin{aligned} &\Rightarrow \frac{d u}{d x}(\text { at } x=0)=\frac{f^{\prime}\left(e^{0}\right) \cdot e^{0}}{f\left(e^{0}\right)} \\\\ &=\frac{f^{\prime}(1) \cdot 1}{f(1)} \end{aligned}

\begin{aligned} &=\frac{2}{4} \\\\ &=\frac{1}{2} \end{aligned}

∴So, the answer will be \frac{1}{2}

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads