Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter 10 Differentiation exercise Very short answers question 19

Answers (1)

Answer:

\cos \operatorname{ec} 2 x

Hint:

By using the chain rule of differentiation

Given:

y=\log \sqrt{\tan x}
Solution:  

\text { i. } e \cdot \frac{d y}{d x}=\frac{d(\log \sqrt{\tan x})}{d(\sqrt{\tan x})} \cdot \frac{d(\sqrt{\tan x})}{d(\tan x)} \cdot \frac{d(\tan x)}{d x}

\begin{aligned} &=\frac{1}{\sqrt{\tan x}} \cdot \frac{1}{2 \sqrt{\tan x}} \cdot \sec ^{2} x \\\\ &=\frac{\sec ^{2} x}{2 \tan x} \\\\ &=\frac{1+\tan ^{2} x}{2 \tan x} \end{aligned}

\begin{aligned} &=\frac{1}{2}(\tan x+\cot x) \\\\ &=\frac{1}{2}\left[\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}\right] \end{aligned}

=\frac{1}{2}\left[\frac{\sin ^{2} x+\cos ^{2} x}{\sin x \cos x}\right] \quad\left[\because \sin ^{2} x+\cos ^{2} x=1\right]

=\frac{1}{2} \times \frac{2}{\sin 2 x}=\cos e c 2 x \quad[\sin 2 x=2 \sin x \cos x]

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads