Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter 10 Differentiation exercise Multiple choice question 25 maths textbook solution

Answers (1)

Answer:

        0

Hint:

        Differentiate the function w.r.t x

Given:

        f(x)=\left(\frac{x^{l}}{x^{m}}\right)^{l+m}\left(\frac{x^{m}}{x^{n}}\right)^{m+n}\left(\frac{x^{n}}{x^{3}}\right)^{n+l}

Solution:  

        f(x)=\left(\frac{x^{l}}{x^{m}}\right)^{l+m}\left(\frac{x^{m}}{x^{n}}\right)^{m+n}\left(\frac{x^{n}}{x^{l}}\right)^{n+l}

                 \begin{aligned} &=x^{(l-m)(l+m)} \times x^{(m-n)(m+n)} \times x^{(n-l)(n+l)} \\\\ &=x^{l^{2}-m^{2}} \times x^{m^{2}-n^{2}} \times x^{n^{2}-l^{2}} \end{aligned}

        \begin{aligned} &f(x)=x^{\left(l^{2}-m^{2}+m^{2}-n^{2}+n^{2}-l^{2}\right)}=x^{0} \\\\ &f(x)=1 \\\\ &f^{\prime}(x)=0 \end{aligned}

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads