Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter 10 Differentiation exercise Multiple choice question 9 maths textbook solution

Answers (1)

Answer:

        |\sec \theta|

Hint:

       Differentiate x and y w.r.t \theta, then divide and solve 

Given:

        x=a \cos ^{3} \theta, y=a \sin ^{3} \theta, \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=

Solution:  

        \begin{aligned} &x=a \cos ^{3} \theta \\\\ &\frac{d x}{d \theta}=a \frac{d}{d \theta}\left(\cos ^{3} \theta\right) \\\\ &\frac{d x}{d \theta}=a(3) \cos ^{2} \frac{d}{d \theta}(\cos \theta) \end{aligned}

        \frac{d x}{d \theta}=-3 a \cos ^{2} \theta \sin \theta           ....................(1)

        \begin{aligned} &y=a \sin \theta \\\\ &\frac{d y}{d \theta}=a \frac{d}{d \theta}\left(\sin ^{3} \theta\right) \end{aligned}

               =3 a \sin ^{2} \theta \frac{d}{d \theta}(\sin \theta)

        \frac{d y}{d \theta}=3 a \sin ^{2} \theta \cos \theta        ......................(2)

Dividing (2) by (1) we get        

        \frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{3 a \sin ^{2} \theta \cos \theta}{-3 a \cos ^{2} \theta \sin \theta}

        \begin{aligned} &\frac{d y}{d x}=\frac{\sin \theta}{-\cos \theta}=-\tan \theta \\\\ &\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=\sqrt{1+\tan ^{2} \theta}=\sqrt{\sec ^{2} \theta}=|\sec \theta| \end{aligned}

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads