Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter 10 Differentiation exercise Very short answers question 21 maths textbook solution

Answers (1)

Answer:

\frac{d y}{d x}=\{0, x \geq 0\} \text { does not exist for } x<0

Hint:

changing   \sec ^{-1}\left(\frac{x+1}{x-1}\right) \text { into } \cos ^{-1}\left(\frac{x-1}{x+1}\right)

Given:

y=\sec ^{-1}\left(\frac{x+1}{x-1}\right)+\sin ^{-1}\left(\frac{x+1}{x-1}\right)
Solution:  

\begin{aligned} &y=\sec ^{-1}\left(\frac{x+1}{x-1}\right)+\sin ^{-1}\left(\frac{x+1}{x-1}\right) \\\\ &y=\cos ^{-1}\left(\frac{x-1}{x+1}\right)+\sin ^{-1}\left(\frac{x+1}{x-1}\right) \end{aligned}

Which exists for

-1 \leq\left(\frac{x-1}{x+1}\right) \leq 1\text { and is equal to } \frac{\pi}{2}

Now,

\frac{x-1}{x+1} \leq 1

\begin{aligned} &\Rightarrow \frac{x-1}{x+1}-1 \leq 0 \\\\ &\Rightarrow \frac{x-1}{x+1}-\frac{x+1}{x+1} \leq 0 \\\\ &\Rightarrow-\frac{2}{x+1} \leq 0 \end{aligned}

\begin{aligned} &\Rightarrow x+1>0 \\\\ &\Rightarrow x>1 \ldots \ldots \ldots . . \text { (i) } \end{aligned}

Also,

\begin{aligned} &\frac{x-1}{x+1} \geq-1 \\\\ &\Rightarrow \frac{x-1}{x+1}+1 \geq 0 \end{aligned}

\begin{aligned} &\Rightarrow \frac{x-1}{x+1}+\frac{x+1}{x+1} \geq 0\\\\ &\Rightarrow \frac{2 x}{x+1} \geq 0\\\\ &\Rightarrow x \geq 0 \text { or } x<-1 \ldots \ldots \ldots \ldots \ldots \ldots(ii) \end{aligned}

Comparing equations (i) and (ii) we understand that the condition satisfying both inequalities is x\geq 0. So, for x\geq 0

y=\cos ^{-1}\left(\frac{x-1}{x+1}\right)+\sin ^{-1}\left(\frac{x+1}{x-1}\right)=\frac{\pi}{2}, which is a constant

So,

\frac{d y}{d x}=\{0, x \geq 0\} \text { does not exist for } x<0

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads