Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class 12 chapter 10 Differentiation exercise Very short answers question 10

Answers (1)

Answer:

The answer of the given question is \frac{2}{1+x^{2}}

Given:

\text { Ify }=\sin ^{-1}\left[\frac{2 x}{1+x^{2}}\right] \text { write the value of } \frac{d y}{d x} \text { for } x>1 \text { . }

Hint:

\text { putting } x=\tan \theta

Solution:  

\begin{aligned} &y=\sin ^{-1}\left[\frac{2 x}{1+x^{2}}\right] \\\\ &y=\sin ^{-1}\left[\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right] \end{aligned}

\begin{aligned} &y=\sin ^{-1} \sin 2 \theta \\\\ &y=2 \theta \\\\ &\Rightarrow y=2 \tan ^{-1} x \end{aligned}

\begin{aligned} &\Rightarrow \frac{d y}{d x}=2 \cdot \frac{1}{1+x^{2}} \\\\ &\Rightarrow \frac{d y}{d x}=\frac{2}{1+x^{2}} \end{aligned}

So the answer will be   \frac{2}{1+x^{2}}

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads