Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 Chapter 15 Tangents and Normals exercise Fill in the blanks question 1

Answers (1)

Answer:

Equation of normal, y=-x

Hint:

Use equation of normal formula,

                \left(y-y_{1}\right)=\frac{-1}{\frac{d y}{d x}}\left(x-x_{1}\right)

Given:

Here given the curve , y=\tan x

To find:

We have to find the equation of normal to the curve at \left ( 0,0 \right )

Solution:

Here given,

                y=\tan x

Differentiating both side with respect to x , we get

\begin{aligned} &\Rightarrow \quad \frac{d y}{d x}=\sec ^{2} x \\\\ &\Rightarrow \quad\left(\frac{d y}{d x}\right)_{(0,0)}=\sec ^{2}(0)=1 \\\\ &\Rightarrow \quad\left(\frac{d y}{d x}\right)_{(0.0)}=1 \end{aligned}

Slope of normal at  \left ( 0,0 \right )=\frac{-1}{\frac{dy}{dx}}

                           =-1

Now, equation of normal to the curve  y=\tan x  at  \left ( 0,0 \right )  is

                \left(y-y_{1}\right)=\frac{-1}{\frac{d y}{d x}}\left(x-x_{1}\right)

\Rightarrow                (y-0)=(-1) x

\Rightarrow                y=-x

Hence, this is the required equation of normal.

 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads