Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter 27 Straight Line in Space Exercise Very Short Answer Question 15 Maths Textbook Solution.

Answers (1)

Answer:

Required answer is   \frac{\sqrt{3}}{\sqrt{55}}, \frac{4}{\sqrt{55}}, \frac{6}{\sqrt{55}}

Hint:

Use equation of line in space

Given:

\frac{2 x-1}{\sqrt{3}}=\frac{y+2}{2}=\frac{z-3}{3}

Solution:

We have,

\frac{2 x-1}{\sqrt{3}}=\frac{y+2}{2}=\frac{z-3}{3}

The equation of the given line can be rewritten as,

\begin{aligned} &\frac{x-\frac{1}{2}}{\frac{\sqrt{3}}{2}}=\frac{y+2}{2}=\frac{z-3}{3} \\ & \end{aligned}

\frac{x-\frac{1}{2}}{\sqrt{3}}=\frac{y+2}{4}=\frac{z-3}{6}

The direction ratios of the line parallel to AB are proportional to  \sqrt{3},4,6

The direction cosines of the line parallel to AB are proportional to,

\begin{aligned} &\frac{\sqrt{3}}{\sqrt{(\sqrt{3})^{2}+4^{2}+6^{2}}}, \frac{4}{\sqrt{(\sqrt{3})^{2}+4^{2}+6^{2}}}, \frac{6}{\sqrt{(\sqrt{3})^{2}+4^{2}+6^{2}}} \\ & \end{aligned}

=\frac{\sqrt{3}}{\sqrt{55}}, \frac{4}{\sqrt{55}}, \frac{6}{\sqrt{55}}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads