Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter 10 Differentiation exercise Multiple choice question 16 maths

Answers (1)

Answer:

        \frac{x^{2}-1}{x^{2}-4}

Hint:

        Differentiate the function w.r.t x

Given:

        \frac{d}{d x}\left[\log \left\{e^{x}\left(\frac{x-2}{x+2}\right)^{\frac{3}{4}}\right\}\right]

Solution:  

        y=\frac{d}{d x}\left[\log \left(e^{x}\left(\frac{x-2}{x+2}\right)^{2}\right)\right]

            =\frac{d}{d x}\left[x \log e+\frac{3}{4} \log \left(\frac{x-2}{x+2}\right)\right]

        y=\frac{d}{d x}\left[x+\frac{3}{4} \log \left(\frac{x-2}{x+2}\right)\right]

        \frac{d y}{d x}=1+\frac{3}{4\left(\frac{x-2}{x+2}\right)} \times \frac{(x+2)-(x-2)}{(x+2)^{2}}

              \begin{aligned} &=1+\frac{3}{4} \frac{(x+2)}{(x-2)} \times \frac{x+2-x+2}{(x+2)^{2}} \\\\ &=1+\frac{3}{4} \frac{(x+2)}{(x-2)} \times \frac{4}{(x+2)} \end{aligned}

             \begin{aligned} &=1+\frac{3}{\left(x^{2}-4\right)} \\\\ &\frac{d y}{d x}=\frac{x^{2}-4+3}{x^{2}-4}=\frac{x^{2}-1}{x^{2}-4} \end{aligned}

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads