Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter 10 Differentiation exercise Multiple choice question 32 maths

Answers (1)

Answer:

        1

Hint:

        Differentiate the function w.r.t x

Given:

        y=\tan ^{-1}\left(\frac{\sin x+\cos x}{\cos x-\sin x}\right)

Solution: 

y=\tan ^{-1}\left(\frac{\sin x+\cos x}{\cos x-\sin x}\right)

\frac{d y}{d x}=\frac{1}{1+\left(\frac{\sin x+\cos x}{\cos x-\sin x}\right)^{2}} \frac{d}{d x}\left(\frac{\sin x+\cos x}{\cos x-\sin x}\right)

\frac{d y}{d x}=\frac{(\cos x-\sin x)^{2}}{(\cos x-\sin x)^{2}+(\sin x+\cos x)^{2}} \times  \left[\frac{(\cos x-\sin x) \frac{d}{d x}(\sin x+\cos x)-(\sin x+\cos x) \frac{d}{d x}(\cos x-\sin x)}{(\cos x-\sin x)^{2}}\right]

        =\frac{(\cos x-\sin x)^{2}}{(\cos x-\sin x)^{2}+(\sin x+\cos x)^{2}}\left[\frac{(\cos x-\sin x)(\cos x-\sin x)-(\sin x+\cos x)(-\sin x-\cos x)}{(\cos x-\sin x)^{2}}\right]

       =\frac{(\cos x-\sin x)^{2}}{(\cos x-\sin x)^{2}+(\sin x+\cos x)^{2}}\left[\frac{(\cos x-\sin x)(\cos x-\sin x)+(\sin x+\cos x)(\sin x+\cos x)}{(\cos x-\sin x)^{2}}\right]

      \begin{aligned} &=\frac{(\cos x-\sin x)^{2}}{(\cos x-\sin x)^{2}(\sin x+\cos x)^{2}} \times \frac{(\cos x-\sin x)^{2}+(\sin x+\cos x)^{2}}{(\cos x-\sin x)^{2}} \\ &\frac{d y}{d x}=1 \end{aligned}

    

 

 

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads