Get Answers to all your Questions

header-bg qa

explain solution RD Sharma class 12 chapter Differentiation exercise 10.2 question 20 maths

Answers (1)

best_answer

Answer: \frac{4 x}{\left(1-x^{2}\right)^{2}} \cos \left(\frac{1+x^{2}}{1-x^{2}}\right)

Hint: You must know the rules of solving derivative of trigonometric functions.

Given: \sin \left(\frac{1+x^{2}}{1-x^{2}}\right)

Solution:

Let      y=\sin \left(\frac{1+x^{2}}{1-x^{2}}\right)

Differentiating with respect to x

\frac{d y}{d x}=\frac{d}{d x}\left[\sin \left(\frac{1+x^{2}}{1-x^{2}}\right)\right]

\frac{d y}{d x}=\cos \left(\frac{1+x^{2}}{1-x^{2}}\right) \frac{d}{d x}\left(\frac{1+x^{2}}{1-x^{2}}\right)                  [  using chain rule]

\frac{d y}{d x}=\cos \left(\frac{1+x^{2}}{1-x^{2}}\right)\left[\frac{\left(1-x^{2}\right) \frac{d}{d x}\left(1+x^{2}\right)-\left(1+x^{2}\right) \frac{d}{d x}\left(1-x^{2}\right)}{\left(1-x^{2}\right)^{2}}\right]...\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}

\frac{d y}{d x}=\cos \left(\frac{1+x^{2}}{1-x^{2}}\right)\left[\frac{\left(1-x^{2}\right)(2 x)-\left(1+x^{2}\right)(-2 x)}{\left(1-x^{2}\right)^{2}}\right]

\frac{d y}{d x}=\cos \left(\frac{1+x^{2}}{1-x^{2}}\right)\left[\frac{2 x-2 x^{3}+2 x+2 x^{3}}{\left(1-x^{2}\right)^{2}}\right]

\frac{d y}{d x}=\frac{4 x}{\left(1-x^{2}\right)^{2}} \cos \left(\frac{1+x^{2}}{1-x^{2}}\right)

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads