Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter 10 Differentiation exercise Fill in the blanks question  7

Answers (1)

Answer: 2

Hint: using chain rule

Given:f(1)=3

Solution:  \frac{d}{d x}=\ln {f(e^{x}+2x)}

\begin{aligned} &=\frac{1}{f\left(e^{x}+2 x\right)}f^{{}'}\left(e^{x}+2 x\right)\times(e^{x}+2) \\\\ &=\left(e^{x}+2 \right) \frac{f^{{}'}\left(e^{0}+2 x\right)}{f\left(e^{0}+2 x\right)} \end{aligned}

\begin{aligned} &=3 \frac{f^{{}'}(1)}{f(1)} \\\\ &=3 \times \frac{2}{3}=2 \end{aligned}

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads