Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter 10 Differentiation exercise Multiple choice question 15

Answers (1)

Answer:

        -\frac{1}{2}

Hint:

        Differentiate the function w.r.t x

Given:

        \frac{d}{d x}\left[\tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right)\right]

Solution:  

        u=\tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right)

        =\tan ^{-1}\left(\frac{\cos ^{2}\left(\frac{x}{2}\right)-\sin ^{2}\left(\frac{x}{2}\right)}{\cos ^{2}\left(\frac{x}{2}\right)-\sin ^{2}\left(\frac{x}{2}\right)+2 \sin \frac{x}{2} \cos \frac{x}{2}}\right)

        =\tan ^{-1} \frac{\left(\cos \frac{x}{2}-\sin \frac{x}{2}\right)\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)}{\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)^{2}}

        =\tan ^{-1}\left[\frac{1-\tan \frac{x}{2}}{1+\tan \frac{x}{2}}\right]

        u=\tan ^{-1}\left[\frac{\tan \frac{\pi}{4}-\tan \frac{x}{2}}{1+\tan \frac{\pi}{4} \times \tan \frac{x}{2}}\right]

           =\tan ^{-1}\left[\tan \left(\frac{\pi}{4}-\frac{x}{2}\right)\right]

        \begin{aligned} &u=\frac{\pi}{4}-\frac{x}{2} \\\\ &\frac{d u}{d x}=0-\frac{1}{2} \\\\ &\frac{d u}{d x}=-\frac{1}{2} \end{aligned}

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads