Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter 10 Differentiation exercise Multiple choice question 28

Answers (1)

Answer:

        1

Hint:

        Differentiate the function w.r.t x

Given:

        y=\log \sqrt{\tan x}

Solution:  

        \begin{aligned} &y=\log \sqrt{\tan x} \\\\ &\frac{d y}{d x}=\frac{1}{\sqrt{\tan x}} \times \frac{d}{d x}(\sqrt{\tan x}) \end{aligned}

              =\frac{1}{\sqrt{\tan x}} \times \frac{1}{2 \sqrt{\tan x}} \times \frac{d}{d x}(\tan x)

        \frac{d y}{d x}=\frac{\sec ^{2} x}{2 \tan x}

Now

        \left(\frac{d y}{d x}\right)_{x=\frac{\pi}{4}}=\frac{\left(\sec \frac{\pi}{4}\right)^{2}}{2 \tan \left(\frac{\pi}{4}\right)}=\frac{2}{2 \times 1}=1

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads