Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter 10 Differentiation exercise Multiple choice question 31

Answers (1)

Answer:

        -\frac{4 x}{1-x^{4}}

Hint:

        Differentiate the function w.r.t x

Given:

        y=\log \left(\frac{1-x^{2}}{1+x^{2}}\right)

Solution:  

        y=\log \left(\frac{1-x^{2}}{1+x^{2}}\right)

        \frac{d y}{d x}=\frac{1}{\frac{1-x^{2}}{1+x^{2}}} \frac{d}{d x}\left(\frac{1-x^{2}}{1+x^{2}}\right)

              =\frac{1+x^{2}}{1-x^{2}}\left[\frac{\left(1+x^{2}\right)(-2 x)-\left(1-x^{2}\right)(2 x)}{\left(1+x^{2}\right)^{2}}\right]

             \begin{aligned} &=\frac{1}{1-x^{2}}\left[\frac{-2 x-2 x^{3}-2 x+2 x^{3}}{1+x^{4}}\right] \\\\ &\frac{d y}{d x}=\frac{-4 x}{1-x^{4}} \end{aligned}

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads