Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class 12 chapter 10 Differentiation exercise Very short answers question 22

Answers (1)

Answer: The value of   \frac{d y}{d x}=\frac{1}{(1-x)^{2}}

Hint:

we replace 1+x+x^{2}+\cdots \infty \text { by } \frac{1}{1-x}

Given:

|x|<1 \text { and } y=1+x+x^{2}+\cdots \infty
Solution:  

Since  |x|<1,

\begin{aligned} &y=1+x+x^{2}+\cdots \infty \\\\ &=\frac{1}{1-x} \\\\ &\therefore \frac{d y}{d x}=-\frac{1}{(1-x)^{2}} \cdot-1 \end{aligned}

       \frac{d y}{d x}=\frac{1}{(1-x)^{2}}

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads