Get Answers to all your Questions

header-bg qa

Explain solution RD sharma class 12 chapter 20 Areas Of Bounded Region exercise Fill in the blanks question 14

Answers (1)

 

20\pisq.units

Hint:

Use this formula to integrate: \int \sqrt{a^{2}-x^{2}}dx=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2}sin^{-1}\frac{x}{a}

Given:

x^{2}+y^{2}=1

Explanation:

Area ABCD=4(Area OAB)                                           … (i)

Now,     \frac{x^{2}}{25}+\frac{y^{2}}{16}=1

\frac{y^{2}}{16}=1-\frac{x^{2}}{25}\\ \frac{y^{2}}{16}=\frac{25-x^{2}}{25}\\ y=\frac{4}{5}\sqrt{25-x^{2}}

Now, from (i) we have

Required area

=4\int_{5}^{0}\frac{4}{5}\sqrt{25-x^{2}}dx\\ =\frac{16}{5}\left [ \frac{x}{2}\sqrt{25-x^{2}}+\frac{25}{2}\sin^{-1}\frac{x}{5} \right ]_{0}^{5}\\ =\frac{16}{5}\left [ \frac{5}{2}\sqrt{25-5^{2}}+\frac{25}{2}\sin^{-1}1 \right ]-\frac{16}{5}\left [ \frac{0}{2}\sqrt{25-0}+\frac{25}{2}\sin^{-1}0 \right ]\\ =\frac{16}{5}\left [ \frac{25}{2}\times \frac{\pi}{2} \right ]\\ =20\pi \;\;sq.units

Posted by

Info Expert 29

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads