Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma Class 12 Chapter 20 Areas of Bounded Regions exercise 20.3 question 32 Maths.

Answers (1)

Answer:

 4 sq. Units

Hint:

Use concept.

Given:

Equation of the given curve x=y^2  and x=3-y^2

Solution: To find area bounded by

x=y^2 …(i)

And x-3=y^2  …(ii)

On solving the equation (i) and (ii),

y^2=3-2y^2

Or 3y^2=3

Or  y=\pm 1

when y =1 then x =1  and when y = -1 then x =1

Equation (i) represents an upward parabola with vertex (0, 0) and axis -y

Equation (ii) represents a parabola with vertex (3, 0) and axis as  x-axis

They intersect at A (1, – 1) and C (1, 1)

These are shown in the graph below:

Required area = Region OABCO = 2

= 2 Region OBCO

= 2[Region ODCO + Region BDCB]

\begin{aligned} &=2\left[\int_{0}^{1} y_{1} d x+\int_{1}^{3} y_{2} d x\right] \\ &=2\left[\int_{0}^{1} \sqrt{x} d x+\int_{1}^{3} \sqrt{\frac{3-x}{2} d x}\right] \\ &\left.=2\left[\left(\frac{2}{3} x \sqrt{x}\right)_{0}^{1}+\left(\frac{2}{3} \cdot\left(\frac{3-x}{2}\right) \sqrt{\frac{3-x}{2}} \cdot(-2)\right)^{2}\right]_{1}\right] \\ &=2\left[\left(\frac{2}{3}-0\right)+\left\{(0)-\left(\frac{2}{3}\right) .1 .1 .(-2)\right\}\right] \\ &=2\left[\frac{2}{3}+\frac{4}{3}\right] \end{aligned}

= 4 sq.units

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads