Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma Class 12 Chapter 20 Areas of Bounded Regions exercise 20.3 question 34 Maths.

Answers (1)

Answer:

\left (\frac{\sqrt{5}\pi}{4}-\frac{1}{2} \right ) sq. Units.

Hint:

Given: \left\{(x, y):|x-1| \leq y \leq \sqrt{\left.\left(5-x^{2}\right)\right\}}\right.

Solution: Equation of the curve is y=\sqrt{(5-x)^2}      or  y^2+x^2=5 ,which is a circle with

centre at (0, 0) and? radius? \frac{5}{2}.

         

Equation of the line is y=\left | x-1 \right |

Consider, y =x -1  and y=\sqrt{5-x^2}

Eliminating y ,we get

\begin{aligned} &x-1=\sqrt{5-x^{2}} \\ &x^{2}+1-2 x=5-x^{2} \\ &2 x^{2}-2 x-4=0 \\ &x^{2}-x-2=0 \\ &(x-2)(x+1)=0 \\ &x=2,-1 \end{aligned}

The required area is

\begin{aligned} &A=\int_{-1}^{2} \sqrt{5-x^{2}} d x-\int_{-1}^{1}(-x+1) d x-\int_{1}^{2}(x-1) d x \\ &=\left[\frac{x}{2} \sqrt{5-x^{2}}+\frac{\sqrt{5}}{2} \sin ^{-1}\left(\frac{x}{\sqrt{5}}\right)\right]_{-1}^{2}+\left[\frac{x^{2}}{2}-x\right]_{-1}^{1}+\left[\frac{-x^{2}}{2}+x\right]_{1}^{2} \\ &=\left[\frac{2}{2} \sqrt{5-4}+\frac{\sqrt{5}}{2} \sin ^{-1}\left(\frac{2}{\sqrt{5}}\right)+\frac{1}{2} \sqrt{5-1}+\frac{\sqrt{5}}{2} \sin ^{-1}\left(\frac{1}{\sqrt{5}}\right)\right]+\left[\frac{1}{2}-1-\frac{1}{2}-1\right]+\left[\frac{-4}{2}+2+\frac{1}{2}-1\right] \end{aligned}

\begin{aligned} &=\left[1+\frac{\sqrt{5}}{2} \sin ^{-1}\left(\frac{2}{\sqrt{5}}\right)+\frac{2}{2}+\frac{\sqrt{5}}{2} \sin ^{-1}\left(\frac{1}{\sqrt{5}}\right)\right]-2-\frac{1}{2} \\ &=2+\left[\frac{\sqrt{5}}{2} \sin ^{-1}\left(\frac{2}{\sqrt{5}}\right)+\frac{\sqrt{5}}{2} \sin ^{-1}\left(\frac{1}{\sqrt{5}}\right)\right]-2-\frac{1}{2} \\ &=\frac{\sqrt{5}}{2} \times \frac{\pi}{2}-\frac{1}{2} \\ &=\frac{\sqrt{5} \pi}{4}-\frac{1}{2} \end{aligned}

=\left (\frac{\sqrt{5}\pi}{4}-\frac{1}{2} \right ) sq.units

Therefore, the area of the region is \left (\frac{\sqrt{5}\pi}{4}-\frac{1}{2} \right ) sq.units.

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads