Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma Class 12 Chapter 20 Areas of Bounded Regions exercise 20.3 question 35 Maths.

Answers (1)

Answer:

 1sq.unit.

Hints:

 Use concept.

Given:

The curves y=\left | x-1 \right | and y=1.

Solution:

To find area bounded by y=\left | x-1 \right |  and y=1

y=\left\{\begin{array}{l} x-1, \text { if } x \geq 0 \\ 1-x, \text { if } x<0 \end{array}\right.

A rough sketch of the curve is as under:

Shaded region is the required area. So

Required area = Region ABCA

A = Region ABDA + Region BCDB

\begin{aligned} &=\int_{0}^{1}\left(y_{1}-y_{2}\right) d x+\int_{1}^{2}\left(y_{1}-y_{3}\right) d x \\ &=\int_{0}^{1}(1-1+x) d x+\int_{1}^{2}(1-x+1) d x \\ &=\int_{0}^{1} x d x+\int_{1}^{2}(2-x) d x \\ &=\left(\frac{x^{2}}{2}\right)_{0}^{1}+\left(2 x-\frac{x^{2}}{2}\right)_{1}^{2} \\ &=\left(\frac{1}{2}-0\right)+\left[(4-2)-\left(2-\frac{1}{2}\right)\right] \\ &=\frac{1}{2}+\left(2-2+\frac{1}{2}\right) \end{aligned}

A = 1 sq. units.

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads