Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma Class 12 Chapter 20 Areas of Bounded Regions exercise 20.3 question 39 Maths.

Answers (1)

Answer: The Area of the region \left\{(x, y): 0 \leq y \leq x^{2}+3 ; 0 \leq y \leq 2 x+3 ; 0 \leq x \leq 3\right\} is \frac{38}{3} sq.units.

Hints:

Given: \left\{(x, y): 0 \leq y \leq x^{2}+3 ; 0 \leq y \leq 2 x+3 ; 0 \leq x \leq 3\right\}

Solution: To find area given equation are

y= x^3+3...... (i)

y= 2x+3....... (ii)

 And x=3    .......(iii)

Solving the above three equations to get the intersectons points,

\begin{aligned} &x^{2}+3=2 x+3 \\ &\text { Or } x^{2}-2 x=0 \\ &\text { Or } x(x-2)=0 \\ &\text { And } x=0 \text { or } x=2 \\ &y=3 \text { or } y=7 \end{aligned}

Equation (i) represents a parabola with vertices (3,0) and axis as y - axis

Equation (ii) represents a line passing through (0,3) and \left (-\frac{3}{2},0 \right )

The points of intersection are A(0,3) and B(2,7)

These are shown in the graph below:

Required area =

\begin{aligned} =& \int_{2}^{3} y_{1} d x+\int_{0}^{2} y_{2} d x \\ =& \int_{2}^{3}(2 x+3) d x+\int_{0}^{2}\left(x^{2}+3\right) d x \\ &=\left(x^{3}+3 x\right)_{2}^{3}+\left(\frac{x^{2}}{3}+x\right)_{0}^{2} \\ &=[(9+9)-(4+6)]+\left[\left(\frac{8}{3}+2\right)-(0)\right] \\ &=[18-10]+\left[\frac{14}{3}\right] \\ &=8+\frac{14}{3} \end{aligned}

=\frac{38}{3} sq.units

Therefore, the area of the region is \frac{38}{3}  sq.units

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads