Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma Class 12 Chapter 20 Areas of Bounded Regions exercise 20.3 question 40 Maths.

Answers (1)

Answer:

\frac{\pi}{8} sq. Units

Hints:

Use concept of definite integrals.

Given:

The curve y=\sqrt{1-x^2} , line y =x  and the positive x-axis

Solution:

\begin{aligned} &y=\sqrt{1-x^{2}} \\ &\Rightarrow y^{2}=1-x^{2} \\ &\Rightarrow x^{2}+y^{2}=1 \end{aligned}

Hence,

y=\sqrt{1-x^2} represents the upper half of the circle x^2+y^2=1  a circle with centre O(0,0) and radius 1 unit.y = x  represents equation of a straight line passing through O(0,0)

Point of intersection is obtained by solving two equations

\begin{aligned} &y=x \\ &y=\sqrt{1-x^{2}} \\ &\Rightarrow x=\sqrt{1-x^{2}} \\ &\Rightarrow x^{2}=1-x^{2} \\ &\Rightarrow 2 x^{2}=1 \\ &\Rightarrow x=\pm \frac{1}{\sqrt{2}} \\ &\Rightarrow y=\pm \frac{1}{\sqrt{2}} \end{aligned}

D\left (\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}} \right ) And D\left (\frac{-1}{\sqrt{2}},\frac{-1}{\sqrt{2}} \right )  are two points of intersection between the circles and the straight line.

And D\left (\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}} \right ) is the intersection point of y=\sqrt{1-x^2} and y =x .

Required area = Shaded area (ODAEO) = Area (ODEO) + Area (EDAE)…..(1)

Now, area (ODEO) =  \int_{0}^{\frac{1}{\sqrt{2}}} x d x

\begin{aligned} &=\left[\frac{x^{2}}{2}\right]_{0}^{\frac{1}{\sqrt{2}}} \\ &=\frac{1}{2}\left(\frac{1}{\sqrt{2}}\right) \\ &=\frac{1}{4} \text { sq.units } \ldots . .(2) \end{aligned}

Area (EDAE) = \int_{\frac{1}{\sqrt{2}}}^{1} \sqrt{1-x^{2}} d x

\begin{aligned} &=\left[\frac{1}{2} x \sqrt{1-x^{2}}+\times \frac{1}{2} \times \sin ^{-1}\left(\frac{x}{1}\right)\right]_{\frac{1}{\sqrt{2}}}^{1}\\ &=0+\frac{1}{2} \sin ^{-1}(1)-\frac{1}{2} \times \frac{1}{\sqrt{2}} \times \sqrt{1-\left(\frac{1}{\sqrt{2}}\right)^{2}}-\frac{1}{2} \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)\\ &=\frac{1}{2} \times \frac{\pi}{2}-\frac{1}{4}-\frac{1}{2} \times \frac{\pi}{4} \ldots \ldots \ldots .\left\{\text { using, } \sin ^{-1}(1)=\frac{\pi}{2} \text { and } \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4}\right\}\\ &=\frac{\pi}{4}-\frac{\pi}{8}-\frac{1}{4}\\ &=\frac{\pi}{8}-\frac{1}{4} \text { sq.units } \ldots &\text { (3) } \end{aligned}

Area (ODAEO) = \frac{1}{4}+\frac{\pi}{4}-\frac{1}{4}=\frac{\pi}{8}  sq.units

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads