Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter 20 Areas of Bounded Regions exercise multiple choice question 12 maths

Answers (1)

Answer:

 (b)

Hint:

 Integration

Given:

 y = x4 - 2x3 + x2 + 3 , x - axis and minima of y

Explanation:

Finding the minima of y

\begin{aligned} &y = x^{4} - 2x^{3} + x^{2} + 3 \\ &\frac{\mathrm{d} y}{\mathrm{d} x}=4x^{3}-6x^{2}+2x \\ &\frac{\mathrm{d} ^{2}y}{\mathrm{d} x^{2}}=12x^{2}-12x+2 \\ \end{aligned}

Now,

\begin{aligned} &\frac{\mathrm{d} y}{\mathrm{d} x}=0 \\ &4x^{3}-6x^{2}+2x=0\\ &2x(2x^{2}-3x+1)=0\\ &x=0 \qquad 2x^{2}-3x+1=0\\ & \qquad \qquad (2x-1)(x-1)=0\\ &x=0,\: 1,\: \frac{1}{2} \end{aligned}

At x = 0

\begin{aligned} &\frac{\mathrm{d} ^{2}y}{\mathrm{d} x^{2}}=2> 0 \end{aligned}

At x = 1

\begin{aligned} &\frac{\mathrm{d} ^{2}y}{\mathrm{d} x^{2}}=12-12+2 =2> 0 \end{aligned}

At

\begin{aligned} &x=\frac{1}{2} \end{aligned}

\begin{aligned} &\frac{\mathrm{d} ^{2}y}{\mathrm{d} x^{2}}=-1 < 0 \end{aligned}

So,f(x) has minimum value at

\begin{aligned} &x=\frac{1}{2} \end{aligned}

The minimum value is y = 1

                    \begin{aligned} &1=x^{4}-2x^{3}+x^{2}+3\\ &x^{4}-2x^{3}+x^{2}+2=0\\ &x=1 \end{aligned}

\begin{aligned} &\int_{0}^{1} (x^{4}-2x^{3}+x^{2}+3)dx\\ &=\left [ \frac{x^{5}}{5}-2\left ( \frac{x^{4}}{x} \right )+\frac{x^{3}}{3}+3x \right ]_{0}^{1}\\ &=\frac{1}{5}-\frac{1}{2}+\frac{1}{3}+3=0\\ &=\frac{91}{30} \end{aligned}

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads