Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma Maths Class 12 Chapter 20 Areas of Bounded Regions exercise 20.3 question 23.

Answers (1)

Answer:

4 sq. units

Hint: use concept.

Given:

The vertices of triangle are (-1,2), (1,5) and (3,4).

Solution:

Equation of,

AB is:y=\frac{1}{2}(3x+7)

BC is: y=\frac{1}{2}(11-x)

AC is: y=\frac{1}{2}(x+5)

Required area

\begin{aligned} &=\frac{1}{2} \int_{-1}^{1}(3 x+7) d x+\frac{1}{2} \int_{1}^{3}(11-x) d x-\frac{1}{2} \int_{-1}^{3}(3 x+5) d x \\ &=\left[\frac{1}{12}(3 x+7)^{2}\right]_{-1}^{1}-\frac{1}{4}\left[(11-x)^{2}\right]_{1}^{3}-\frac{1}{4}\left[(x+5)^{2}\right]_{-1}^{3} \\ &=7+9-12 \\ &=4 \text { sq.units } \end{aligned}

 

(ii)

Equation of,

AB is:  y =\frac{3}{2}x+4

BC is:   y =4-\frac{x}{2}

AC is: y =\frac{1}{2}x+2

Required area

\begin{aligned} &=\int_{-2}^{0}\left(\frac{3}{2} x+4\right) d x+\int_{0}^{2}\left(4-\frac{x}{2}\right) d x-\int_{-2}^{2}\left(\frac{1}{2} x+2\right) d x \\ &=\left[\frac{3 x^{2}}{4}+4 x\right]_{-2}^{0}+\left[4 x-\frac{x^{2}}{4}\right]_{0}^{2}-\left[\frac{x^{2}}{4}+2 x\right]_{-2}^{2} \\ &=5+7-8 \\ &=4 \; \text{sq. units} \end{aligned}

 

(III)

 

Equation of ,

AB is:  y =x+3

BC is : y =\frac{34-5x}{2}

AC is: y =\frac{26-3x}{4}

Required area

\begin{aligned} &=\int_{2}^{4}(x+3) d x+\int_{4}^{6}\left(\frac{34-5 x}{2}\right) d x-\int_{2}^{6}\left(\frac{26-3 x}{4}\right) d x \\ &=\left[\frac{x^{2}}{2}+3 x\right]_{2}^{4}+\left[\frac{34 x}{2}-\frac{5 x^{2}}{4}\right]_{4}^{6}-\left[\frac{26 x}{4}+\frac{3 x^{2}}{8}\right]_{2}^{6} \end{aligned}

\begin{aligned} &=\left[(8+12)-(2+6)+(102-45)-(68-20)-\left(39-\frac{27}{2}\right)-\left(13-\frac{3}{2}\right)\right] \\ &=20-8+57-48-26+12 \\ &=7 \text { sq.units } \end{aligned}

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads