Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma Maths Class 12 Chapter 20 Areas of Bounded Regions exercise 20.3 question 27.

Answers (1)

Answer:

\frac{64}{3}\; \text{sq. units}

Hint:

use concept.

Given:

The given equations are y=x-1 and (y-1)^2=4(x+1)

Solution:

We have.y=x-1 and (y-1)^2=4(x+1)

\therefore (x-1-1)^2=4(x+1)

\begin{aligned} &(x-2)^{2}=4(x+1) \\ &x^{2}+4-4 x=4 x+4 \\ &x^{2}+4-4 x-4 x-4=0 \\ &x^{2}-8 x=0 \\ &x=0 \text { or } x=8 \\ &\therefore y=-1 \text { or } 7 \end{aligned}

Consider a horizontal strip of length \left |x_2-x_1 \right |  and width dy where P(x_2,y)  lies on straightline and Q(x_1,y) lies on the parabola.

Area of approximating rectangle=\left |x_2-x_1 \right |  and it moves from y =1 to y =- 7

\text { Required area }=\operatorname{area}(O A D O)=\int_{1}^{7}\left|x_{2}-x_{1}\right| d y

\begin{aligned} &=\int_{-1}^{7}\left|x_{2}-x_{1}\right| d y \ldots \ldots \ldots\left\{\therefore\left|x_{2}-x_{1}\right|=x_{2}-x_{1} \text { as } x_{2}>x_{1}\right\} \\ &=\int_{-1}^{7}\left[(1+y)-\frac{1}{4}\left\{(y-1)^{2}-4\right\}\right] d y \\ &=\int_{-1}^{7}\left\{1+y-\frac{1}{4}(y-1)^{2}+1\right\} d y \\ &=\int_{-1}^{7}\left\{2+y-\frac{1}{4}(y-1)^{2}\right\} d y \end{aligned}

\begin{aligned} &=\left[2 y+\frac{y^{2}}{2}-\frac{1}{12}(y-1)^{3}\right]_{-1}^{7} \\ &=\left[14+\frac{49}{2}-\frac{1}{2} \times 6 \times 6 \times 6\right]-\left[-2+\frac{1}{2}+\frac{1}{12} \times 2 \times 2 \times 2\right] \\ &=\left[14+\frac{49}{2}-18\right]-\left[-2+\frac{1}{2}+\frac{2}{3}\right] \\ &=\left[\frac{41}{2}+\frac{5}{6}\right] \\ &=\frac{64}{3} \text { sq.units } \end{aligned}

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads