Get Answers to all your Questions

header-bg qa

Please solve RD Sharma Class 12 Chapter 20 Areas of Bounded Region Exercise 20.3 Question 41 Maths textbook solution.

Answers (1)

Answer:

\frac{15}{2}  sq. units

Hints:

Use concept.

Given:

Lines y=4x+5,y=5-x  and 4y=x+5

Solution:

To find area bounded by lines

 y=4x+5 {Say AB}

y=x-5  {Say BC}

4y=x+5  {Say AC}

By solving equation (1) and (2) , we get B(0,5)

By solving equation (2) and (3) , we get C(3,2)

By solving equation (1) and (3) , we get A(-1,1)

A rough sketch of the curve is as under:-

Shaded area ABC is the required area.

Required area = ar( ABD) + ( BDC)

ar( ABD) =\int_{0}^{-1}(y_1-y_2)dx

 

\begin{aligned} &=\int_{-1}^{0}\left(4 x+5-\frac{x}{4}-\frac{5}{4}\right) d x \\ &=\int_{-1}^{0}\left(\frac{15 x}{4}+\frac{15}{4}\right) d x \\ &=\frac{15}{4}\left(\frac{x^{2}}{2}+x\right)_{-1}^{0} \\ &=\frac{15}{4}\left[(0)-\left(\frac{1}{2}-1\right)\right] \\ &=\frac{15}{4} \times \frac{1}{2} \end{aligned}

 

AR ( ABD) = \frac{15}{8} sq. units

AR ( BDC) = \int_{0}^{3}(y_2-y_3)dx

\begin{aligned} &=\int_{0}^{3}\left[(5-x)-\left(\frac{x}{4}+\frac{5}{4}\right)\right] d x \\ &=\int_{0}^{3}\left[5-x-\frac{x}{4}-\frac{5}{4}\right] d x \\ &=\int_{0}^{3}\left(\frac{-5 x}{4}+\frac{15}{4}\right) d x \\ &=\frac{5}{4}\left(3 x-\frac{x^{2}}{2}\right) \\ &=\frac{5}{4}\left(9-\frac{9}{2}\right) \end{aligned}

AR ( BDC) = \frac{45}{8}  sq. units

Using equation (1), (2) and (3),

AR ( ABC) = \frac{15}{8}+\frac{45}{8}

=\frac{60}{8}

ar( ABC) = =\frac{15}{2} sq. units

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads