Get Answers to all your Questions

header-bg qa

Please solve RD Sharma Class 12 Chapter 20 Areas of Bounded Region Exercise 20.3 Question 42 Maths textbook solution.

Answers (1)

Answer:

\left(6 \pi-\frac{9 \sqrt{3}}{2}\right)  sq. units

Hints:

Use concept.

Given:

The two curves x^2+y^2=9  and (x-3)^2+y^2=9

Solution:

To find area enclosed by

x^2+y^2=9 ……. (1)

(x-3)^2+y^2=9  …….. (2)

Equation (1) represents a circle with centre (0,0) and meets axis at \left ( \pm 3,0 \right )  , \left ( 0,\pm 3 \right )

Equation (2) is a circle with center (3,0) and meets axis at (0,0) , (6,0)

they intersect each other at \left ( \frac{3}{2}, \frac{3\sqrt{3}}{2} \right ) and \left ( \frac{3}{2}, \frac{3\sqrt{3}}{2} \right ) . A rough sketch of the curves is as under:

Shaded region is the required area.

Required area = Region OABCO

A = 2(Region OBCO)

   = 2(Region ODCO + Region DBCD)

=2\left[\int_{0}^{\frac{3}{2}} \sqrt{9-(x-3)^{2}} d x+\int_{\frac{3}{2}}^{3} \sqrt{9-x^{2}} d x\right]

\begin{aligned} &\left.=2\left[\left\{\frac{(x-3)}{2} \sqrt{9-(x-3)^{2}}+\frac{9}{2} \sin ^{-1} \frac{(x-3)}{3[]}\right\}_{0}^{\frac{3}{2}}+\left\{\frac{x}{2} \sqrt{9-x^{2}}+\frac{9}{2} \sin ^{-1}\left(\frac{x}{3}\right)\right\}_{\frac{3}{2}}\right]_{2}^{3}\right] \\ &=2\left[\left\{\left(-\frac{3}{4} \sqrt{9-\frac{9}{4}}+\frac{9}{2} \sin ^{-1}\left(-\frac{3}{6}\right)\right)-\left(0+\frac{9}{2} \sin ^{-1}(-1)\right)\right\}+\left\{\left(0+\frac{9}{2} \sin ^{-1}(1)\right)-\left(\frac{3}{4} \sqrt{9-\frac{9}{4}}+\frac{9}{2} \sin ^{-1}\left(\frac{1}{2}\right)\right) .\right.\right. \end{aligned}

\begin{aligned} &=2\left[\left\{-\frac{9 \sqrt{3}}{8}-\frac{9}{2}-\frac{\pi}{6}+\frac{9}{2}-\frac{\pi}{2}\right\}+\left\{\frac{9}{2}-\frac{\pi}{2}-\frac{9 \sqrt{3}}{8}-\frac{9}{2}-\frac{\pi}{6}\right\}\right] \\ &=2\left[-\frac{9 \sqrt{3}}{8}-\frac{3 \pi}{4}+\frac{9 \pi}{4}+\frac{9 \pi}{4}-\frac{9 \sqrt{3}}{8}-\frac{3 \pi}{4}\right] \\ &=2\left[\frac{12 \pi}{4}-\frac{18 \sqrt{3}}{8}\right] \\ &=\left(6 \pi-\frac{9 \sqrt{3}}{2}\right) \text { sq. units } \end{aligned}

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads