Get Answers to all your Questions

header-bg qa

Please solve RD Sharma Class 12 Chapter 20 Areas of Bounded Regions Exercise 20.3 Question 43 Maths textbook solution.

Answers (1)

Answer:

\pi -2  sq. units

Hints:

Use concept.

Given:

\left\{(x, y): x^{2}+y^{2} \leq 4, x+y \geq 2\right\}

Solution: The equation of the given curves are

x^2+y^2=4 ……(1)

x+y=2  …….(2)

Clearly x^2+y^2=4 represents a circle and x+y=2 is the equation of a straight line cutting x and y axis at (0,2) and (2,0) respectively.

The smaller region bounded by thesetwo curves is shaded in the following figure.

Length = y_2-y_1

Width = x and

Area = (y_2-y_1)x

Since the approximating rectangle can move from x=0 to x=2, the required area is given by

\begin{aligned} &\mathrm{A}=\int_{0}^{2}\left(y_{2}-y_{1}\right) d x\\ &\text { We have } y_{1}=2-x \text { and } y_{2}=\sqrt{4-x^{2}}\\ &\text { Thus, } A=\int_{0}^{2}\left(\sqrt{4-x^{2}}-2+x\right) d x\\ &\Rightarrow \mathrm{A}=\int_{0}^{2}\left(\sqrt{4-x^{2}}\right) d x-2 \int_{0}^{2} d x+\int_{0}^{2} x d x \end{aligned}

\begin{aligned} &\Rightarrow A=\left[\frac{x \sqrt{4-x^{2}}}{2}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{2}\right)\right]_{0}^{2}-2(x)_{0}^{2}+\left(\frac{x^{2}}{2}\right)_{0}^{2} \\ &\Rightarrow A=\frac{4}{2} \sin ^{-1}\left(\frac{2}{2}\right)-4+2 \\ &\Rightarrow A=2 \sin ^{-1}(1)-2 \\ &\Rightarrow A=2 \times \frac{\pi}{2}-2 \\ &\Rightarrow A=\pi-2 \end{aligned}

Therefore, the area of the region is \pi -2  sq. units

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads