Get Answers to all your Questions

header-bg qa

Please solve RD Sharma Class 12 Chapter 20 Areas of Bounded Regions Exercise 20.3 Question 45 Maths textbook solution.

Answers (1)

Answer:

\left(\frac{4 \pi}{3}-\sqrt{3}\right) \text { sq. units }

Hints:

Use concept.

Given:

The curve y=\sqrt{4-x^2} ,x^2+y^2-4x=0  and the x-axis.

Solution:

Give, equation of a curves are

y=\sqrt{4-x^2} ……(1)

x^2+y^2-4x=0  ……(2)

Consider the curve

y=\sqrt{4-x^2}=y^2-4x=0

y^2+x^2=0 which represents a circle with centre (0, 0) and radius 2 units.

Now, consider the curve x^2+y^2-4x=0   which also represents a circle with centre (2,0) and radius 2 units.

Now Let us sketch the graph of given curves and find their points of intersection.

On substituting the value of y from Eq. (1) in Eq. (2), we get

x^2(4-x)^2-4x=0  or 4-4x=0  or x=1

On substituting  x =1 in Eq. (1), we get  y=\sqrt{3}

Thus, the point of intersection is \left ( 1.\sqrt{3} \right ) .

Clearly, required area = Area of shaded region OABO

\begin{aligned} &=\int_{0}^{1} y_{(\text {sacoricicic } k)} d x+\int_{1}^{2} y_{(f \text { trs cic } c i e)} d x \\ &=\int_{0}^{1} \sqrt{4 x-x^{2}} d x+\int_{1}^{2} \sqrt{4-x^{2}} d x \\ &=\int_{0}^{1} \sqrt{-\left(x^{2}-4 x\right)} d x+\int_{0}^{2} \sqrt{2^{2}-x^{2}} d x \end{aligned}

\begin{aligned} &=\int_{0}^{1} \sqrt{-\left[x^{2}-2(2)(x)+4-4\right]} d x+\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1}\left(\frac{x}{2}\right)\right]_{1}^{2} \\ &=\int_{0}^{1} \sqrt{4-(x-2)^{2}} d x+\left[2 \sin ^{-1}(1)-\left\{\frac{1}{2} \sqrt{3}+2 \sin ^{-1}\left(\frac{1}{2}\right)\right\}\right] \end{aligned}

\begin{aligned} &=\left[\frac{(x-2)}{2} \sqrt{4 x-x^{2}}+2 \sin ^{-1}\left(\frac{x-2}{2}\right)\right]_{0}^{1}+\left[2 \cdot \frac{\pi}{2}-\frac{\sqrt{3}}{2}-2 \cdot \frac{\pi}{6}\right] \\ &=\left[\left\{\frac{-\sqrt{3}}{2}+2 \sin ^{-1}\left(\frac{-1}{2}\right)\right\}-\left\{2 \sin ^{-1}(-1)\right\}\right]+\left(\pi-\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right) \\ &=-\frac{\sqrt{3}}{2}-2 \sin ^{-1}\left(\frac{1}{2}\right)+2 \sin ^{-1}(1)+\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\left[\therefore \sin ^{-1}(-x)=-\sin ^{-1} x\right] \end{aligned}

\begin{aligned} &=2 \cdot \frac{\pi}{2}-2 \cdot \frac{\pi}{6}+\frac{2 \pi}{3}-\sqrt{3} \\ &=\pi-\frac{\pi}{3}+\frac{2 \pi}{3}-\sqrt{3} \\ &=\pi+\frac{\pi}{3}-\sqrt{3}=\left(\frac{4 \pi}{3}-\sqrt{3}\right) \text { sq. units } \end{aligned}

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads