Get Answers to all your Questions

header-bg qa

Please solve RD Sharma Class 12 Chapter 20 Areas of Bounded Regions Exercise 20.3 Question 47 Maths textbook solution.

Answers (1)

Answer:

A= \frac{33}{2}\; \text{sq. units}

Hints:

Use concept.

Given:

The curves 3x^2+5y =32 and y=\left | x-2 \right | .

Solution:

To find area enclosed by

3x^2+5y=32

3x^2=-5\left ( y-\frac{32}{5} \right )   ……. (1)

And

\begin{aligned} &y=|x-2|\\ &\Rightarrow y= \begin{cases}-(x-2), & \text { if } x-2<1 \\ (x-2), & \text { if } x-2 \geq 1\end{cases}\\ &\Rightarrow y=\left\{\begin{array}{l} 2-x, \text { if } x<2 \\ x-2, \text { if } x \geq 2\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; ........(2) \end{array}\right. \end{aligned}

Equation (1) represents a downward parabola with vertex \left (0,\frac{32}{5} \right )  and equation (2) represents lines. A rough sketch of curves is given as:

Required area = Region ABECDA

A = Region ABEA + Region AECDA

=\int_{2}^{3}\left(y_{3}-y_{4}\right) d x+\int_{-2}^{2}\left(y-y_{2}\right) d x

\begin{aligned} &=\int_{2}^{3}\left(\frac{32-3 x^{2}}{5}-x+2\right) d x+\int_{-2}^{2}\left(\frac{32-3 x^{2}}{5}-2+x\right) d x \\ &=\frac{1}{5} \int_{2}^{3}\left(\frac{32-3 x^{2}-5 x+10}{5}\right) d x+\int_{-2}^{2}\left(\frac{32-3 x^{2}-10+5 x}{5}\right) d x \\ &=\frac{1}{5}\left[\int_{2}^{3}\left(42-3 x^{2}-5 x\right) d x+\int_{-2}^{2}\left(22-3 x^{2}+5 x\right) d x\right] \end{aligned}

\begin{aligned} &=\frac{1}{5}\left[\left(42 x-x^{3}-\frac{5 x^{2}}{2}\right)_{2}^{3}+\left(22 x-x^{3}+\frac{5 x^{2}}{2}\right)_{-2}^{2}\right] \\ &=\frac{1}{5}\left[\left\{\left(126-27-\frac{45}{2}\right)-(84-8-10)\right\}+\{(44-8+10)-(-44+8+10)\}\right] \\ &=\frac{1}{5}\left[\left\{\frac{153}{2}-66\right\}+\{46+26\}\right] \\ &=\frac{1}{5}\left[\frac{21}{2}+72\right] \end{aligned}

A= \frac{33}{2}\; \text{sq. units}

  

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads