Get Answers to all your Questions

header-bg qa

Please solve RD Sharma Class 12 Chapter 20 Areas of Bounded Regions Exercise 20.3 Question 49 Maths textbook solution.

Answers (1)

Answer:

121:4

Hints:

Use basic concepts.

Given:

The parabola y=4x-x^2  and y=x^2-x .

Solution:

The curves are

\begin{aligned} &y=4 x-x^{2}\\ &\Rightarrow-(y-4)=(x-2)^{2}\\ &\text { And } y=x^{2}-x \text {. }\\ &\Rightarrow\left(y+\frac{1}{4}\right)^{2}=\left(x-\frac{1}{2}\right)^{2} \end{aligned}

Equation (1) represents a parabola downward with vertex at (2,4) and meets axis at (4,0), (0,0). Equation (2) represents a parabola upward whose vertex is \left (\frac{1}{2}, \frac{1}{4} \right )  and meets axis at (1,0), (0,0) and \left (\frac{5}{2}, \frac{15}{4} \right ) . A rough sketch of the curves is as under:

Area of the region above x-axis

A_1  = Area of region OBACO

      = Region OBCO + Region BACB

=\int_{0}^{1} y_{1} d x+\int_{1}^{\frac{5}{2}}\left(y_{1}-y_{2}\right) d x

\begin{aligned} &=\int_{0}^{1}\left(4 x-x^{2}\right) d x+\int_{1}^{\frac{5}{2}}\left(4 x-x^{2}-x^{2}+x\right) d x \\ &=\left(\frac{4 x^{2}}{2}-\frac{x^{3}}{3}\right)_{0}^{1}+\left[\frac{5 x^{2}}{2}-\frac{2 x^{3}}{3}\right]_{1}^{\frac{5}{2}} \\ &=\left(2-\frac{1}{3}\right)+\left[\left(\frac{125}{8}-\frac{250}{24}\right)-\left(\frac{5}{2}-\frac{2}{3}\right)\right] \\ &=\frac{5}{3}+\frac{125}{24}-\frac{11}{6} \\ &=\frac{121}{24} \text { sq. units } \end{aligned}

Area of the region below x-axis

A_2 = Area of region OPBO

     = Region OBCO + Region BACB

  \begin{aligned} &=\left|\int_{0}^{1} y_{2} d x\right| \\ &=\left|\int_{0}^{1}\left(x^{2}-x\right) d x\right| \\ &=\left|\left(\frac{x^{3}}{3}-\frac{x^{2}}{2}\right)_{0}^{1}\right| \\ &=\left|\left(\frac{1}{3}-\frac{1}{2}\right)-(0)\right| \\ &=\left|-\frac{1}{6}\right| \\ A_{2} &=\frac{1}{6} \text { sq. units } \end{aligned}

\begin{aligned} &A_{1} \cdot A_{2}=\frac{121}{24}: \frac{4}{24} \\ &A_{1} \cdot A_{2}=121: 24 \end{aligned}

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads