Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter 20 Areas of Bounded Regions exercise multiple choice question 37 maths textbook solution

Answers (1)

Answer:

 (b)

Hint:

 \int \sqrt{a^{2}-x^{2}}dx=\frac{x}{2}\sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2}sin^{-1}\left ( \frac{x}{a} \right )+c

Given:

 In first quadrant, x- axis (y = 0), y = x, x2 + y2 = 32

Explanation:

Intersection point,

\begin{aligned} &y = x\\ &x^{2}+x^{2}=32\\ &2x^{2}=32\\ &x^{2}=16\\ &x=\pm 4 \end{aligned}

x = -4 is not possible as we have to find in first quadrant and in first quadrant x > 0

\begin{aligned} &x=4\\ &y^{2}+x^{2}=32\\ &x^{2}=32\\ &x=4\sqrt{2} \end{aligned}

Now,     y = x

Therefore, y = 4

Area of ABCD = Area of ABD + Area of BCD

\begin{aligned} &=\int_{0}^{4}xdx+\int_{4}^{4\sqrt{2}}\sqrt{32-x^{2}}dx\\ &=\left [ \frac{x^{2}}{2} \right ]_{0}^{4}+\left [ \frac{x}{2}\sqrt{32-x^{2}}+\frac{1}{2}(32)sin^{-1}\frac{x}{4\sqrt{2}} \right ]_{4}^{4\sqrt{2}}\\ &=8+\frac{4\sqrt{2}}{2}\sqrt{32(4\sqrt{2})^{2}}+\frac{1}{2}(32)sin^{-1}\frac{4\sqrt{2}}{4\sqrt{2}}-\frac{4}{2}\sqrt{32-(4)^{2}}-16sin-1\frac{4}{4\sqrt{2}}\\ &=8+0+16sin^{-1}1-2\sqrt{32-16}-16sin^{-1}\frac{1}{\sqrt{2}} \end{aligned}

\begin{aligned} &=8+16\left ( \frac{\pi }{2} \right )-2(4)-16 \left ( \frac{\pi }{4} \right )\\ &=8+8\pi -8-4\pi \\ &=4\pi \text { sq.units } \end{aligned}

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads