Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma Maths Class 12 Chapter 20 Areas of Bounded Region Exercise 20.3 question 12.

Answers (1)

Answer:  

\frac{9}{2}\; \text{sq. units} .

Hint:  Using the formula

Given: The equations of the given curves are

y^2=x            ..........(I)

x+y =2           ........(II)

Solution:   Plot the two curves

y^2=x            ..........(I)

x+y =2           ........(II)

Solving  (I) and (II) ,we have

\begin{aligned} &y^{2}+y=2\\ &(y+2)(y-1)=0\\ &y=-2,1 \end{aligned}

We have to determine the area of shaded region.

Required Area

\begin{aligned} &=\int_{2}^{1}(2-y) d y-\int_{-2}^{1} y^{2} d y \\ &\left.=2 y-\frac{y^{2}}{2}-\frac{y^{3}}{3}\right]_{-2}^{1} \\ &=\left(2-\frac{1}{2}-\frac{1}{3}\right)-\left(-4-\frac{4}{2}+\frac{8}{3}\right) \\ &=\frac{9}{2} \text { square units. } \end{aligned}

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads