Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma Maths Class 12 Chapter 20 Areas of Bounded Region Exercise 20.3 question 18.

Answers (1)

Answer:

9 sq. units.

Hint:use basic concepts.

Given:

he given equations of the curves are

y=\sqrt{x}x=2y+3

Solution:   We have,

y=\sqrt{x}x=2y+3

Solving we get,

\begin{aligned} &y=\sqrt{2 y+3}, y \geq 0 \\ &y^{2}=2 y+3, y \geq 0 \\ &y^{2}-2 y-3=0, y \geq 0 \\ &(y-3)(y+1)=0, y \geq 0 \\ &y=3 \end{aligned}

 

The graph of function y=\sqrt{x}  is part of parabolay=x^2  lying above x  –axis.

The graph is as shown in the figure.

From the figure, area of shaded region,

\begin{aligned} A &=\int_{0}^{3}\left(2 y+3-y^{2}\right) d y \\ &=\left[\frac{2 y^{2}}{2}+3 y-\frac{y^{3}}{3}\right]_{0}^{3} \\ &=\left[\frac{18}{9}+9-9-0\right] \\ &=9 \text { sq units } \end{aligned}

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads