Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter Probability exercise 30.7 question 4 maths

Answers (1)

Answer:

 \begin{aligned} &\frac{1}{40} \end{aligned}

Hint:

 Use baye’s theorem.

Given:

The content of three win

Win I: 7 white, 3 black;

Win II: 4 white, 6 black

Win III: 2 white 8 black

One ball drawn as random with probability 0.20, 0.60, 0.20 respectively drawn chosen win two balls drawn random without replacement. If both these ball drawn what is probability came from win III?

Solution:

Let E1,E2,E3  denote the event of selecting win I, win II, win III.

Let A be event of two balls drawn white.

\begin{aligned} &P(E_1)=\frac{20}{100}\\ &P(E_2)=\frac{60}{100}\\ &P(E_3)=\frac{20}{100}\\ &P\left ( \frac{A}{E_1} \right )=\frac{7C_2}{10C_2}=\frac{21}{45}\\ &P\left ( \frac{A}{E_2} \right )=\frac{4C_2}{10C_2}=\frac{6}{45}\\ &P\left ( \frac{A}{E_3} \right )=\frac{2C_2}{10C_2}=\frac{1}{45}\\ \end{aligned}

Using Baye’s theorem we get

\begin{aligned} &P\left (\frac{E_3}{A} \right )=\frac{P(E_3).P\left ( \frac{A}{E_3} \right )}{P(E_1)\times P\left ( \frac{A}{E_1} \right )+P(E_2)\times P\left ( \frac{A}{E_2} \right )+P(E_3)\times P\left ( \frac{A}{E_3} \right )}\\ &=\frac{{\frac{20}{100}\times \frac{1}{45} }}{\frac{20}{100}\times \frac{21}{45}+\frac{60}{100}\times \frac{6}{45}+\frac{20}{100}\times \frac{1}{45}}\\ &=\frac{1}{21+18+1}\\ &=\frac{1}{40} \end{aligned}

 

 

 

 

 

 

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads