Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter Probability exercise 30.6 question 11

Answers (1)

Answer:

 \frac{59}{130}

Hint:

 To solve this we use

\begin{aligned} &P(A)=P(E_1)\times P\left (\frac{A}{E_1} \right )+ P(E_2)\times P\left (\frac{A}{E_2} \right )+P(E_3)\times P\left (\frac{A}{E_3} \right ) \end{aligned}

Given:

 An urn contains 10 white and 3 black balls. Another urn contains 3 white and 5 black balls.

Solution:

E1=2W …{2 white balls are transferred from I to II urn}
E2=2B……{2 black balls are transferred from I to II urn}
E3=1W,1B….{A white ball and a black ball are transferred from I to II urn}
A = White ball drawn
\begin{aligned} &P(E_1)=\frac{^{10}C_2}{^{13}C_2} \qquad ; \qquad P(E_2)=\frac{^{3}C_2}{^{13}C_2} \qquad ; \qquad P(E_3)=\frac{^{10}C_1\: ^{3}C_1}{^{13}C_2}\\ &A=\text { white ball }\\ &P\left (\frac{A}{E_1} \right )=\frac{1}{2} \qquad ; \qquad P\left (\frac{A}{E_2} \right )=\frac{3}{10} \qquad ; \qquad P\left (\frac{A}{E_3} \right )=\frac{2}{5} \end{aligned}

Using total probabilty theorem

\begin{aligned} &\text { required probability }=P(A)=P(E_1)\times P\left (\frac{A}{E_1} \right )+ P(E_2)\times P\left (\frac{A}{E_2} \right )+P(E_3)\times P\left (\frac{A}{E_3} \right )\\ &=\frac{10\times 9}{13\times 12}\times \frac{1}{2}+\frac{3\times 2}{13\times 12}\times \frac{3}{10}+\frac{30\times 2}{13\times 12}\times \frac{2}{5}\\ &=\frac{15}{52}+\frac{3}{260}+\frac{2}{13}\\ &=\frac{225+9+120}{780}=\frac{354}{780}=\frac{177}{390}\\ &=\frac{59}{130} \end{aligned}

 

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads